Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(6): 1515-1526, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315822

RESUMO

Monoclonal antibodies (mAbs) are an important modality of protein therapeutics with broad applications for numerous diseases. However, colloidal instabilities occurring at high protein concentrations can limit the ability to develop stable, high-concentration liquid dosage forms that are required for patient-centric, device-mediated products. Therefore, it is advantageous to identify colloidally stable mAbs early in the discovery process to ensure that they are selected for development. Experimental screening for colloidal stability can be time- and resource-consuming and is most feasible at the later stages of drug development due to material requirements. Alternatively, computational approaches have emerging potential to provide efficient screening and focus developmental efforts on mAbs with the greatest developability potential, while providing mechanistic relationships for colloidal instability. In this work, coarse-grained, molecular-scale models were fine-tuned to screen for colloidal stability at amino-acid resolution. This model parameterization provides a framework to screen for mAb self-interactions and extrapolate to bulk solution behavior. This approach was applied to a wide array of mAbs under multiple buffer conditions, demonstrating the utility of the presented computational approach to augment early candidate screening and later formulation strategies for protein therapeutics.


Assuntos
Anticorpos Monoclonais , Humanos , Modelos Moleculares
2.
J Chem Theory Comput ; 18(3): 1894-1904, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35108013

RESUMO

Heparin is a highly charged, polysulfated polysaccharide and serves as an anticoagulant. Heparin binds to multiple proteins throughout the body, suggesting a large range of potential therapeutic applications. Although its function has been characterized in multiple physiological contexts, heparin's solution conformational dynamics and structure-function relationships are not fully understood. Molecular dynamics (MD) simulations facilitate the analysis of a molecule's underlying conformational ensemble, which then provides important information necessary for understanding structure-function relationships. However, for MD simulations to afford meaningful results, they must both provide adequate sampling and accurately represent the energy properties of a molecule. The aim of this study is to compare heparin's conformational ensemble using two well-developed force fields for carbohydrates, known as GLYCAM06 and CHARMM36, using replica exchange molecular dynamics (REMD) simulations, and to validate these results with NMR experiments. The anticoagulant sequence, an ultra-low-molecular-weight heparin, known as Arixtra (fondaparinux, sodium), was simulated with both parameter sets. The results suggest that GLYCAM06 matches experimental nuclear magnetic resonance three-bond J-coupling values measured for Arixtra better than CHARMM36. In addition, NOESY and ROESY experiments suggest that Arixtra is very flexible in the sub-millisecond time scale and does not adopt a unique structure at 25 C. Moreover, GLYCAM06 affords a much more dynamic conformational ensemble for Arixtra than CHARMM36.


Assuntos
Heparina , Simulação de Dinâmica Molecular , Espectroscopia de Ressonância Magnética , Conformação Molecular
3.
Langmuir ; 30(35): 10661-7, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25133680

RESUMO

Fatty acid aggregation is important for a number of diverse applications: from origins of life research to industrial applications to health and disease. Experiments have characterized the phase behavior of oleic acid mixtures, but the molecular details are complex and hard to probe with many experiments. Coarse-grained molecular dynamics computer simulations and free energy calculations are used to model oleic acid aggregation. From random dispersions, we observe the aggregation of oleic acid monomers into micelles, vesicles, and oil phases, depending on the protonation state of the oleic acid head groups. Worm-like micelles are observed when all the oleic acid molecules are deprotonated and negatively charged. Vesicles form spontaneously if significant amounts of both neutral and negative oleic acid are present. Oil phases form when all the fatty acids are protonated and neutral. This behavior qualitatively matches experimental observations of oleic acid aggregation. To explain the observed phase behavior, we use umbrella sampling free energy calculations to determine the stability of individual monomers in aggregates compared to water. We find that both neutral and negative oleic acid molecules prefer larger aggregates, but neutral monomers prefer negatively charged aggregates and negative monomers prefer neutral aggregates. Both neutral and negative monomers are most stable in a DOPC bilayer, with implications on fatty acid adsorption and cellular membrane evolution. Although the CG model qualitatively reproduces oleic acid phase behavior, we show that an updated polarizable water model is needed to more accurately predict the shift in pKa for oleic acid in model bilayers.


Assuntos
Simulação de Dinâmica Molecular , Ácido Oleico/química , Bicamadas Lipídicas/química , Micelas
4.
J Phys Chem B ; 118(18): 4817-31, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24725177

RESUMO

The multidomain ser/thr kinase "target of rapamycin" (TOR) centrally controls eukaryotic growth and metabolism. The C-terminal FATC domain is important for TOR regulation and was suggested to directly mediate TOR-membrane interactions. Here, we present a detailed characterization of the membrane immersion properties of the oxidized and reduced yeast TOR1 FATC domain (2438-2470 = y1fatc). The immersion depth was characterized by NMR-monitored interaction studies with DPC micelles containing paramagnetically tagged 5- or 16-doxyl stearic acid (5-/16-SASL) and by analyzing the paramagnetic relaxation enhancement (PRE) from Mn(2+) in the solvent. Complementary MD-simulations of micellar systems in the absence and presence of protein showed that 5-/16-SASL can move in the micelle and that 16-SASL can bend such that the doxyl group is close to the headgroup region and not deep in the interior as commonly assumed. Based on oriented CD (OCD) data, the single α-helix of oxidized/reduced y1fatc has an angle to the membrane normal of ∼30-60°/∼35-65° in neutral and ∼5-35°/∼0-30° in negatively charged bilayers. The presented experimentally well-founded models help to better understand how this redox-sensitive peripheral membrane anchor may be part of a network of protein-protein and protein-membrane interactions regulating TOR localization at different cellular membranes. Moreover, the presented work provides a good methodological reference for the structural characterization of other peripherally membrane associating proteins.


Assuntos
Fosfatidilinositol 3-Quinases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Dicroísmo Circular , Micelas , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...